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Narrative Service

www.narrative.pubpharm.de

http://www.narrative.pubpharm.de/
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Document Graphs

www.narrative.pubpharm.de

http://www.narrative.pubpharm.de/


Supervised Text Processing

https://github.com/HermannKroll/SupervisedTextProcessing

https://github.com/HermannKroll/SupervisedTextProcessing


• RQ1: Which model should we use in a digital library project?

– Tradeoff between accuracy and training/runtime costs

• RQ2: How to design a full digital library pipeline?

– One model for all purposes? Multiple models?

• RQ3: How can we label training data?

– By experts? By distant supervision? By large language models?
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Research Questions



• Relation extraction:

• Text classification:
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Tasks

“[…] treated with metformin for 

gestational diabetes mellitus.”

…

…

…
 

treats

Pharmaceutical Technology

supervised classification methods



• Traditional classification models:

– Support Vector Classifier

– Extreme Gradient Boosting (XGBoost)

– Random Forest

– tfidf and sBERT for embedding texts

• Language Models:

– Generic: BERT, RoBERTa, XLNet

– Domain-specific: BioBERT, BioLinkBERT, PubMedBERT
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Classification Models



• 8 biomedical data sets (4 for each task)
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RQ1: Which model?
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RQ1: Evaluation Strategy

Model Hyperparameter Grid

SVC C: {0.1, 1, 10, 100}, kernel: {poly, rbf, sigmoid}, degree: {1, 2, 3, 4, 5, 6}

XGBoost n_estimators: {50, 100}, max_depth: {3, 5}, learning_rate: {0.01, 0.1}, subsample: {0.8, 1.0}, colsample_bytree: {0.8, 1.0}

Random Forest n_estimators: {50, 100}, max_depth: {None, 10, 20}, min_samples_split’: {2, 5}, min_samples_leaf: {1, 2}

Language Models learning_rate: {1e-3, 1e-4, 1e-5}, epochs: {1, 3, 5}, weight_decay: {0.0, 0.1, 0.2, 0.3}
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RQ1: Results

Relation Extraction Text Classification
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RQ1: Performance (Relation Extraction)
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RQ1: Take-a-ways

Measure

Relation Extraction Text Classification

Effectiveness

Quality LMs outperform TMs TMs are comparable to LMs

Specificity Domain specific models mostly outperform generic models

Efficiency

Model TMs are much faster than LMs (even for CPU vs GPU)

Hardware LMs require a GPU for a large scale application

Specificity Domain specific models are faster than 

the generic models

Both types have comparable application 

times



RQ2: How to design a full 

digital library pipeline?

Please have a look at our paper!



RQ3: How can we label 

training data?



• Relabel existing training data by:

– Experts: provided by the benchmark

– Distantly supervised: relabel using knowledge bases

– Prompting large language models

• 1-Prompt: take the result of the first prompt

• 3-Prompt; 1-Yes: Positive label if one of the three prompts is positive

• 3-Prompt; 2-Yes: Positive label if two of the three prompts are positive

• 3-Prompt; 3-Yes: Positive label if all of the prompts are positive 

• This just works for relation extraction
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RQ3: Relabeling
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RQ3: Relabeling Quality (RE)



1. Train model on

relabeled training

2. Test model on 

original test set
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RQ3: Training on Relabeled Data (RE)
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RQ3: Findings for Relation Extraction

Distantly supervised Llama 3 GPT-4o

Binary labels

Quality
Depends on the 

knowledgebase

Comparable results with the experts labeling

→ GPT-4o still better

Multiple labels

Quality Not applicable Bad results; invalid answers occur

Other

Require-

ments

Good knowledgebases GPU to run the model 

efficiently

OpenAI Account + API access

~130$ to relabel 4 benchmarks

Pricing Depends on the 

knowledgebase source

Free to use after verification Expensive for real scale 

applications



20Supervised Text Processing — Hermann Kroll — TU Braunschweig

RQ3: Text Classification

Flip data randomly

Reduce data 

randomly

Train on two best 

performing models

fractions

100%

75%

50%

25% 

Compare resultsIntroduce noise

Look at our paper ☺



Conclusion
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Conclusion

Contributions

Model comparison LMs more robust and accurate compared to shallow models

GPUs are a must-have when working with LMs

Shallow models like SVC/XGBoost may still worth using

Data Labeling LLMs can label training data with a moderate quality and 

costs

→ overall classification quality is then decreased

Future Work

MultiTask Examination of more reliable MultiTask-Setups

Data Labeling Prompt Engineering and Instruction Tuning

Possibility of generating useful datasets using LLMs



• Our service handles about 38M document abstracts

– Methods need to be robust and scalable

– We do not have training data available for every required relation
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Why did we do the research?



• “While some of our findings were expected, e.g., that LMs are more 

robust and accurate on classification tasks, our paper contributes a 

library perspective when applying them.“

~ claimed by our paper

• Briefly, it’s a library perspective on NLP tools

– We shed a light on the tradeoff between quality and runtimes

– We share our code ☺
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But why should you read?



Thank You!
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krollh@acm.org

If you have any questions, 

contact me via:

@hkroll@fosstodon.org

www.hkroll.de

https://github.com/HermannKroll/SupervisedTextProcessing

http://www.hkroll.de/
https://github.com/HermannKroll/SupervisedTextProcessing
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